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Looping linear programming decoding
of LDPC codes

Michael Chertkov and Mikhail G. Stepanov

Abstract— Considering the Linear Programming (LP) decod-
ing of Low-Density-Parity-Check (LDPC) code [1], we describe
an efficient algorithm for finding pseudo codewords with the
smallest effective distance. The algorithm, coined LP-loop, starts
from choosing randomly initial configuration of the noise. The
configuration is modified through a discrete number of steps.
Each step consists of two sub-steps. First, one applies LP decoder
to the initial noise-configuration deriving a pseudo-codeword.
Second, one finds configuration of the noise equidistant fromthe
pseudo codeword and the all zeros codeword. The resulting noise
configuration is used as an entry for the next step of the LP-loop
algorithm. The iterations converge fast to a pseudo codeword
neighboring the all zeros codeword — domain of the pseudo
codeword attraction shares a common piece of error-surface
with the all zeros codeword domain. Repeated many times the
LP-loop procedure is characterized by the distribution function
(frequency spectrum) of the pseudo codeword effective distance.
Effective distance of the coding scheme is approximated by the
shortest distance pseudo-codeword in the spectrum. Efficiency
of the LP-loop algorithm is demonstrated on examples of the
Tanner (155, 64, 20) code and Margulis p = 7 and p = 11 codes
(672 and 2640 bits long respectively) performing over Additive-
White-Gaussian-Noise (AWGN) channel.

Index Terms— LDPC codes, Linear Programming Decoding,
Error-floor

I. I NTRODUCTION I: LDPC CODES AND THEIR

DECODINGS.

We consider generic LDPC code of Gallager [2], described
by its parity checkN × M sparse matrix,̂H , representingN
bits andM checks. A codewordσ = {σi}, i = 1, . . . , N and
σi = 0, 1 satisfies all the check constraints:∀α = 1, . . . , M ,
∑

i Hαiσi = 0 (mod2). We discuss the practical case of finite
N and M , as opposed to theN, M → ∞ (thermodynamic)
limit for which Shannon capacity theorems were formulated
[3]. The codeword is sent into a noisy channel. To make
our consideration concrete we consider specific model for the
channel — AWGN channel. (Notice that all the discussions
and results of the paper can be easily generalized to other ad-
ditive noise linear channel models.) Corruption of a codeword
in the AWGN channel is described by the following transition
probability:

P(x|σ) ∝
∏

i

exp
[

−2s2(xi − σi)
2
]

, (1)

wherex is the signal measured at the channel output ands is
the Signal-to-Noise Ratio (SNR) of the code. Ideal, Maximum
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Likelihood (ML), decoding correspondent to restoration ofthe
most probable pre-imageσ′ given the output signalx,

argmax
σ

′

P(x|σ′), (2)

is not feasible in reality since the complexity grows exponen-
tially with the system size. Belief-propagation (BP), or sum-
product, algorithm of Gallager [2] (see also [4], [6], [5]) is a
popular iterative scheme often used for decoding of the LDPC
codes. Another popular iterative algorithm, that can be viewed
as a certain limit of the sum-product, is the min-sum algorithm.
For an idealized code containing no loops (path connecting any
two bits through sequence of other bits and their neighboring
checks is unique) sum-product (with sufficient number of
iterations) is exactly equivalent to the so-called Maximum-
A-Posteriori (MAP) decoding. MAP is reduced to ML in the
limit of infinite SNR. For any realistic code (with loops) both
sum-product and min-sum are approximate. Sum-product can
also be considered as an algorithm solving iteratively certain
nonlinear equations, one refers to as the BP equations. The
BP equations minimize the so-called Bethe free energy [7].
(The Bethe free energy approach originates from variational
methodology developed in statistical physics [8], [9].) Mini-
mizing the Bethe free energy, that is a nonlinear function of
the probabilities/beliefs, under the set of linear (compatibility
and normalizability) constraints is generally a difficult task.
However in the limit of large SNR one approximates the
Bethe free energy just by the self-energy part assuming that
the entropy terms are inessential. Then the problem turns to
minimizing a linear function under the set of linear constraints
– solvable by standard and computationally feasible Linear
Programming (LP) approach. This is exactly the idea behind
LP decoding introduced by J. Feldman, M. Wainwright and
D.R. Karger [1] in a bit different but absolutely equivalent
way – as a relaxation of the ML decoding. (The authors of
[1] do mention similarity of their approach to the Bethe free
energy approach of [7].) In the LP approach one minimizes
the Bethe self-energy,

E =
∑

α

∑

σα

bα(σα)
∑

i∈α

σi(1 − 2xi)/ki, (3)

with respect to beliefsbα(σα) and under certain equality and
inequality constraints. Here in Eq. (3)ki is the degree of
connectivity of thei bit; σα is a local codeword,σα = {σi|i ∈
α,

∑

i Hαiσi = 0 (mod 2)}, associated with the checkα.
The equality constraints are of the two types, normalization
constraints (beliefs, as probabilities, should sum to one)and
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compatibility constraints

∀ α :
∑

σα

bα(σα) = 1, (4)

∀ i ∀ α ∋ i : bi(σi) =
∑

σα\σi

bα(σα), (5)

respectively wherebi(σi) is the belief (probability) to find bit
i in the stateσi. Besides, all the beliefs should be non-negative
and smaller or equal than unity, thus here is the additional set
of the obvious inequality constraints:

0 ≤ bi(σi), bα(σα) ≤ 1. (6)

II. I NTRODUCTION II: PSEUDO CODEWORDS, FRAME

ERROR RATE AND EFFECTIVE DISTANCE

As it was shown in [1], and also discussed in [10], [11], the
result of the LP decoding is rarely a codeword but typically
a pseudo codeword: a special configuration containing non-
integers (but rational numbers) among the beliefsbi and bα.
This configurations can be interpreted as mixed state config-
urations, i.e. the ones consisting of a probabilistic mixture of
local (corresponding to a single check) codewords.

Important characteristics of the code/decoding performance
is Frame Error Rate (FER), calculating the probability of
decoding failure. FER decreases with SNR increase and the
form of this dependence of FER on SNR gives the ulti-
mate characterization of the coding scheme performance. Any
decoding to a pseudo-codeword is a failure. Decoding to
a codeword can also be a failure, but this would as well
counts as a failure under the ML decoding. At large SNR
splitting of the two FER vs SNR curves, representing ML
decoding and approximate decoding (say LP decoding) is
due to the pseudo codewords. Actual asymptotics of the two
curves for the AWGN channel are FERML ∼ exp[−dML ·s

2/2]
and FERLP ∼ exp[−dLP · s2/2], wheredML is the so-called
Hamming distance of the code and thedLP is the effective
distance of the code, specific for the LP decoding. The LP
asymptotic is normally shallower than the ML one,dLP < dML .
This phenomenon is called error-floor [12].

For a generic linear code performed over symmetric channel
it is easy to show that FER is invariant under the change of the
original codeword (sent into the channel). Therefore, for the
purpose of FER calculation it is enough to analyze statistics
exclusively for the case of one known original codeword, say
the all zeros codeword. Than calculating the effective distance
of a code one makes an assumption that there exists a special
configuration (or may be few special configurations) of the
noise, instantons according to the terminology of [13], describ-
ing the large SNR error-floor asymptotic for FER. Suppose
a pseudo codeword,̃σ = {σ̃i = bi(1); i = 1, . . . , N},
corresponding to the most damaging configuration of the
noise (instanton),xinst, is found. Than finding the instanton
configuration itself (i.e. respective configuration of the noise)
is not a problem, one only needs to maximize the transition
probability (1) with respect to the noise field,x, taken at
σ = 0 and under condition that the self-energy calculated for
the pseudo-codeword in the given noise fieldx is zero (i.e.
equal to the value of the self energy for the all zeros code
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σσσ(2) = σσσ(3) end

Fig. 1. Schematic illustration of the LP-loop algorithm. This example
terminates atk∗ = 3.

word). The resulting expression for the optimal configuration
of the noise (instanton) is

xinst =
σ̃

2

∑

i σ̃i
∑

i σ̃2
i

, (7)

and the respective effective distance is

dLP =
(
∑

i σ̃i)
2

∑

i σ̃2
i

. (8)

Eqs. (7,8) are reminiscent of the formulas derived by Wiberg
and co-authors [14], [15] in the context of the computational
tree analysis applied to iterative decoding with finite number
of iterations.

III. LP- LOOP. THE ALGORITHM.

In this Section we turn directly to describing the LP-loop
algorithm. Once the algorithm is formulated, relation to the
introductory material, as well as justification and motivation
will become clear.

• Start: Initiate a starting configuration of the noise,x
(0).

• Step 1: LP decoder calculates closest pseudo codeword,
σ

(k), for the given configuration of the noise

{b
(LP,k)
i (σi), b

(LP,k)
α (σα)}

= argmin
{bi(σi),bα(σα)}

{

E
(

x
(k); {bi(σi), bα(σα)}

)

at the conditions of Eqs. (4,5,6)

}

,

σ
(k)
i = b

(LP,k)
i (1),

where the self-energy is defined according to Eq. (3).
• Step 2: Find the conditioned median,y(k), in the noise

space between the pseudo codeword,σ
(k), and the all

zeros codeword

y
(k) =

σ
(k)

2

∑

i σ
(k)
i

∑

i

(

σ
(k)
i

)2 .

• Step 3: If y
(k) = y

(k−1), k∗ = k and the algorithm
terminates, otherwise go toStep 2 assigningx

(k+1) =
y

(k) + 0.
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• Output: The output configurationy(k∗) is configuration
of the noise that belongs to the error-surface surrounding
the all zeros codeword. (The error-surface separates the
domain of right LP decisions from the domain of wrong
LP decisions for the original message being the all zeros
codeword.) Moreover, locally, i.e. for the given part of
the error-surface equidistant from the all zeros codeword
and the pseudo codewordσ(k∗), y

(k∗) is the closest point
of the error-surface to the all zeros codeword.

The LP-loop algorithm is schematically illustrated at Fig.1.
We repeat the algorithm many times picking the initial noise
configuration randomly, however guaranteing that it would be
sufficiently far from the all zeros codeword so that the result
of the LP decoding (first step of the algorithm) is a pseudo
codeword and not the all zeros codeword. The LP-loop always
converges in some relatively small number of iterations. The
effective distance of the coding scheme (for given LDPC code
decoded by LP decoder) is approximated by

dLP ≈ min
attempts of the LP-loop

{

(

∑

i σ
(k∗)
i

)2

∑

i

(

σ
(k∗)
i

)2

}

. (9)

It is not guaranteed that the noise configuration with the lowest
possible (of all the pseudo codewords within the decoding
scheme) distance is found in the result of finite number of the
LP-loop iterations. However the rhs of Eq. (9) gives a very
tight (if the number of attempts is sufficient) upper bound for
the actual effective distance of the coding scheme.

IV. LP-LOOP. EXAMPLES.

In this Section we demonstrate the power of the simple LP-
loop procedure explained in the previous Section by consid-
ering three popular examples of relatively long regular LDPC
codes.

A. Tanner(155, 64, 20) code of [16]

For this codeN = 155 and M = 93. The Hamming
distance of the code is known to bedML = 20. The authors of
[10] reported a pseudo codeword withd = 16.406. The lowest
effective distance configuration found in the result of the LP-
loop procedure hasdLP ≈ 16.4037. These two and some
number of other lower lying (in the sense of their effective
distance) configurations are shown in Fig. 2. The resulting
frequency spectra (derived from3, 000 attempts of the LP-
loop) is shown in Fig. 3. Some of the pseudo codewords
found are actually other (than the all zero one) codewords.
In particular, one finds a codeword closest to the all zeros one
with d = dML = 20.

B. Margulis code [17] withp = 7

This code hasN = 2 · M = 672. The set of four noise
configurations with the lowest effective distance found by the
LP-loop algorithm for the code are shown in Fig. 4. The lowest
configuration decodes into a codeword with the Hamming
distance16. A big gap separates this configuration from the
next lowest configuration corresponding to a pseudo codeword

bit label,    = 0, ..., 154i
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Fig. 2. 8 lowest configurations found by the LP-loop algorithm for the
(155, 64, 20) code. Typical number of the LP-loop iterations required to rich
a stopping point is5 ÷ 15.
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Fig. 3. Frequency spectrum (distribution function) of the effective dis-
tance constructed from 3,000 attempts of the LP-loop algorithm for the
(155, 64, 20) code.

that is not a codeword. Frequency spectra, characterizing
performance of the LP-loop algorithm for the code, is shown
in Fig. 5.

C. Margulis code [17] withp = 11

This code isN = 2·M = 2640 bits long. We have relatively
small number of configurations (30) here as it takes much
longer to execute LP loop algorithm in this case. Some30÷60
steps of the LP-loop are required for a typical realization of the
algorithm to rich a stopping point. Four lowest configurations
are shown in Fig. 6. Obviously, with this limited statistics
one cannot claim that the noise configuration with the lowest
possible effective length is found. All the stopping point
configurations found here correspond to pseudo codewords.
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bit label,    = 0, ..., 671i
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Fig. 4. 4 lowest noise configuration found by the LP-loop algorithm for
the Margulisp = 7 code of [17]. Typical number of the LP-loop iterations
required to rich a stopping point is10 ÷ 20.
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Fig. 5. Frequency spectrum (distribution function) of the effective distance
found through multiple attempts of the LP-loop for the Margulis p = 7 code.
The figure is built on 250 random attempts of the LP-loop algorithm.

(Hamming distance for the code is not known, while the upper
bound mentioned in [18] is220.)

V. CONCLUSIONS ANDDISCUSSIONS

Let us discuss utility of the LP-loop algorithm suggested
in the manuscript. The LP-loop gives an efficient way of
calculating the effective distance of a code decoded by LP.
It also predicts the noise configuration on the error-surface
surrounding the all zeros codeword correspondent to the
shortest effective distance. Efficiency of the algorithm, tested
for three popular and relatively long codes, is due to fast
convergence of an individual attempt of the LP-loop. (Even
for the2640 bits long code it typically takes only30÷60 steps
of the LP-loop to converge.) As it was already mentioned, the
LP-loop procedure applies to any additive noise linear channel.
The only obvious modifications one needs to make to extend
the LP-loop to other channels concern Eqs. (7,8,9) and also
the basic equation of the Step 2.

One would obviously be interested to extend the looping
algorithm to other (traditional) types of LDPC decoding, e.g.
to finding minimal distance of sum-product and min-sum de-
codings. We observed, however, that at least a naive extension
of the looping procedure does not work. It is guaranteed in
the LP decoding case that the noise configuration found as a
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Fig. 6. 4 lowest noise configurations found by the LP-loop algorithm for
the Margulisp = 11 code of [17]. Typical number of the LP-loop iterations
required to rich a stopping point is30 ÷ 60.

median (+0) of the all zeros codeword and a pseudo codeword
will not be decoded into the all zeros codeword. This allows
us to explore the noise space always decreasing monotonically
the effective distance, or keeping it constant, with any step
of the LP-loop. It is not yet clear if this key feature of the
LP decoding is expandable (hopefully with some modification
of the median procedure) to other decodings. The question
requires further investigation.

Even thought this direct attempt to extend the looping
algorithm to iterative decoding did not work, we did find
a way to apply the LP-loop for analysis of an iterative
decoding. We used the most damaging configuration of the
noise found within the LP-loop as an entry point for the
instanton-amoeba method of [13], which is designed for find-
ing instanton configurations (most damaging configurationsof
the noise) in the case of a standard iterative decoding. This
hybrid method works well, sometimes resulting in discovery
of pseudo codewords (of respective iterative scheme) with
impressively small effective distance. We attribute this fact
to the close relation existed between the LP decoding and
standard iterative decodings. The results of this hybrid LP-
loop-instanton-amoeba analysis and also detailed evaluation of
the relation between LP and iterative decodings will be dis-
cussed elsewhere [19]. Summarizing, the LP-loop algorithm,
complemented and extended by the instanton-amoeba method
of [13], provides an efficient practical tool for analysis of
the effective distance and the most damaging configuration of
the noise (instanton) describing the error-floor for an arbitrary
LDPC code performing over linear channel and decoded by
LP or iteratively.

Continuing this discussion and turning to the Generalized
Belief Propagation (GBP) of [7] as yet another type of decod-
ing, one can also consider a Generalized Linear Programming
(GLP) decoding simply combining checks in super-checks
(called valid regions in [7]) and introducing respective set of
extra constraints into the LP minimization procedure. GLP
will obviously be an improvement against LP showing up in
the effective distance increase. On the other hand, GLP will
also inherit the convergence of the LP, which is important for
success of the looping procedure. Therefore, to find the most
damaging configuration of the noise for the GLP decoding we
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suggest using the GLP-loop procedure, that is similar to the
LP one and only requires to change from LP to GLP at an
individual iteration step of the LP-loop algorithm.

Regarding possible application of the LP-loop algorithm to
other areas of information science and statistical physics, let
us note that the whole approach obviously applies to analysis
of the high SNR limit in many other important inference
problems. One particularly interesting example laying outside
of the coding theory, where BP, GBP and thus LP, GLP, LP-
loop and GLP-loop may find very interesting applications, is
from the2d inter-symbol interference (detection in2d channels
with memory), where GBP is claimed to be remarkably
efficient [20].
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